Digital Mars Home | Search | D | Comments
Last update Tue Aug 23 2005
D
Language
Phobos
Comparisons

Declarations

Declaration:
        typedef Decl
        alias Decl
        Decl

Decl:
        StorageClass Decl
        BasicType Declarators ;
        BasicType Declarator FunctionBody

Declarators:
        DeclaratorInitializer
        DeclaratorInitializer , DeclaratorIdentifierList

DeclaratorInitializer:
        Declarator
        Declarator = Initializer

DeclaratorIdentifierList:
        DeclaratorIdentifier
        DeclaratorIdentifier , DeclaratorIdentifierList

DeclaratorIdentifier:
        Identifier
        Identifier = Initializer

BasicType:
        bit
        byte
        ubyte
        short
        ushort
        int
        uint
        long
        ulong
        char
        wchar
        dchar
        float
        double
        real
        ifloat
        idouble
        ireal
        cfloat
        cdouble
        creal
        void
        . IdentifierList
        IdentifierList
        Typeof
        Typeof . IdentifierList

BasicType2:
        *
        [ ]
        [ Expression ]
        [ Type ]
        delegate ( ParameterList )
        function ( ParameterList )

Declarator:
        BasicType2 Declarator
        Identifier
        ( Declarator )
        Identifier DeclaratorSuffixes
        ( Declarator ) DeclaratorSuffixes

DeclaratorSuffixes:
        DeclaratorSuffix
        DeclaratorSuffix DeclaratorSuffixes

DeclaratorSuffix:
        [ ]
        [ Expression ]
        [ Type ]
        ( ParameterList )

IdentifierList:
        Identifier
        Identifier . IdentifierList
        TemplateInstance
        TemplateInstance . IdentifierList

Typeof:
        typeof ( Expression )

StorageClass:
        abstract
        auto
        const
        deprecated
        final
        override
        static
        synchronized

Type:
        BasicType
        BasicType Declarator2

Declarator2:
        BasicType2 Declarator2
        ( Declarator2 )
        ( Declarator2 ) DeclaratorSuffixes

ParameterList:
        Parameter
        Parameter , ParameterList
        ...

Parameter:
        Declarator
        Declarator = AssignExpression
        InOut Declarator
        InOut Declarator = AssignExpression

InOut:
        in
        out
        inout

Initializer:
        void
        AssignExpression
        ArrayInitializer
        StructInitializer

Declaration Syntax

Declaration syntax generally reads right to left:

int x;          // x is an int
int* x;         // x is a pointer to int
int** x;        // x is a pointer to a pointer to int
int[] x;        // x is an array of ints
int*[] x;       // x is an array of pointers to ints
int[]* x;       // x is a pointer to an array of ints

Arrays read right to left as well:

int[3] x;       // x is an array of 3 ints
int[3][5] x;    // x is an array of 5 arrays of 3 ints
int[3]*[5] x;   // x is an array of 5 pointers to arrays of
                // 3 ints

Pointers to functions are declared using the function keyword:

int function(char) x;    // x is a pointer to a function taking
                         // a char argument and returning an int
int function(char)[] x;  // x is an array of pointers to
                         // functions taking a char argument and
                         // returning an int

C-style array declarations may be used as an alternative:

int x[3];            // x is an array of 3 ints
int x[3][5];         // x is an array of 3 arrays of 5 ints
int (*x[5])[3];      // x is an array of 5 pointers to arrays of
                     // 3 ints
int (*x)(char);      // x is a pointer to a function taking a
                     // char argument and returning an int
int (*[] x)(char);   // x is an array of pointers to functions
                     // taking a char argument and returning an
                     // int

In a declaration declaring multiple symbols, all the declarations must be of the same type:

int x, y;       // x and y are ints
int* x, y;      // x and y are pointers to ints
int x, *y;      // error, multiple types
int[] x, y;     // x and y are arrays of ints
int x[], y;     // error, multiple types

Type Defining

Strong types can be introduced with the typedef. Strong types are semantically a distinct type to the type checking system, for function overloading, and for the debugger.

typedef int myint;

void foo(int x) { . }
void foo(myint m) { . }

.
myint b;
foo(b);         // calls foo(myint)

Typedefs can specify a default initializer different from the default initializer of the underlying type:

typedef int myint = 7;
myint m;                // initialized to 7

Type Aliasing

It's sometimes convenient to use an alias for a type, such as a shorthand for typing out a long, complex type like a pointer to a function. In D, this is done with the alias declaration:

alias abc.Foo.bar myint;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot distinguish between them, and there is no difference as far as function overloading is concerned. For example:

alias int myint;

void foo(int x) { . }
void foo(myint m) { . }  // error, multiply defined function foo

Type aliases are equivalent to the C typedef.

Alias Declarations

A symbol can be declared as an alias of another symbol. For example:

import string;

alias string.strlen mylen;
...
int len = mylen("hello");      // actually calls string.strlen()

The following alias declarations are valid:

template Foo2(T) { alias T t; }
alias Foo2!(int) t1;
alias Foo2!(int).t t2;
alias t1.t t3;
alias t2 t4;

t1.t v1;        // v1 is type int
t2 v2;          // v2 is type int
t3 v3;          // v3 is type int
t4 v4;          // v4 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect references from one symbol to another:

version (Win32)
{
    alias win32.foo myfoo;
}
version (linux)
{
    alias linux.bar myfoo;
}

Aliasing can be used to 'import' a symbol from an import into the current scope:

alias string.strlen strlen;

Aliases can also 'import' a set of overloaded functions, that can be overloaded with functions in the current scope:

class A {
    int foo(int a) { return 1; }
}

class B : A {
    int foo( int a, uint b ) { return 2; }
}

class C : B {
    int foo( int a ) { return 3; }
    alias B.foo foo;
}

class D : C  {
}


void test()
{
    D b = new D();
    int i;

    i = b.foo(1, 2u);   // calls B.foo
    i = b.foo(1);       // calls C.foo
}

Note: Type aliases can sometimes look indistinguishable from alias declarations:

alias foo.bar abc;       // is it a type or a symbol?

The distinction is made in the semantic analysis pass.

typeof

Typeof is a way to specify a type based on the type of an expression. For example:

void func(int i)
{
    typeof(i) j;         // j is of type int
    typeof(3 + 6.0) x;   // x is of type double
    typeof(1)* p;        // p is of type pointer to int
    int[typeof(p)] a;    // a is of type int[int*]

    printf("%d\n", typeof('c').sizeof);  // prints 1
    double c = cast(typeof(1.0))j;       // cast j to double
}

Expression is not evaluated, just the type of it is generated:

void func()
{
    int i = 1;
    typeof(++i) j;          // j is declared to be an int, i is
                            // not incremented
    printf("%d\n", i);      // prints 1
}

There are two special cases: typeof(this) will generate the type of what this would be in a non-static member function, even if not in a member function. Analogously, typeof(super) will generate the type of what super would be in a non-static member function.

class A { }

class B : A
{
    typeof(this) x;      // x is declared to be a B
    typeof(super) y;     // y is declared to be an A
}

struct C
{
    typeof(this) z;      // z is declared to be a C*
    typeof(super) q;     // error, no super struct for C
}

typeof(this) r;          // error, no enclosing struct or class

Where Typeof is most useful is in writing generic template code.

Feedback and Comments

Add feedback and comments regarding this page.


Copyright © 1999-2005 by Digital Mars, All Rights Reserved