I've put together a code sample, which could demonstrate the awesome power of D when it comes to getting good results very quickly and safely. Perhaps it could end up on display for newcomers:
import std.traits;
/// Returns the t-th point on the bezier curve, defined by non-empty set p of d-dimensional points, where t : [0, 1] and d > 1.
real[d] bezier(size_t d, Number)(Number[d][] p, Number t)
if(d > 1 && isFloatingPoint!Number)
in
{
assert(p.length > 0);
assert(t >= 0.0L && t <= 1.0L);
}
body
{
return p.length > 1 ? (1 - t) * p[0..$-1].bezier(t) + t * p[1..$].bezier(t) : p[0];
}
/// Returns k unidistant points on the bezier curve, defined by non-empty set p of d-dimensional points, where k > 0 and d > 1.
real[d][] bezier(size_t d, Number)(Number[d][] p, size_t k)
if(d > 1 && isFloatingPoint!Number)
in
{
assert(p.length > 0);
assert(k > 0);
}
body
{
Number[d][] result = new Number[d][k];
foreach(i; 0..k)
result[k] = p.bezier(i * (1.0L / k));
return result;
}
--
Bye,
Gor Gyolchanyan.