April 18, 2013

Merhaba,

Gün geçmiyor ki asal sayılar hakkında yeni bir şey öğrenmeyeyim. Kuşkusuz bu da bir büyü ama elle tutulur bir şeyler (şifreleme harici) ortaya koymadıkça ne işe yarar bu çalışmalar demeden de edemiyorum. Belki bilgisayarları günlerce çalıştırıp enerji harcamaktan öteye gitmiyordur...:)

Alıntı:

>

The number N = (2^42737+1)/3 is prime.

It is related to the conjecture of Bateman, Selfridge and Wagstaff,
see [1]. Previous exponents p leading to prime values of N_p =
(2^p+1)/3 can also be found at [1]. The next value of p for which N_p is a
probable prime is p=83339, which might not be undoable in a near future.

The number N has 12,865 decimal digits and the proof was built using
fastECPP [2] on several networks of workstations.

Cumulated timings are given w.r.t. AMD Opteron(tm) Processor 250 at
2.39 GHz.

1st phase: 218 days (72 for sqrt; 8 for Cornacchia; 134 for PRP tests)
2nd phase: 93 days (2 days for building all H_D's; 83 for solving H_D mod p)

The certificate (>19Mb compressed) can be found at:

http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/Certif/bsw42737.certif.gz

It took 2 days to check the 1165 proof steps on a single processor.

Acknowledgment: thanks to Tony Reix for having pushed me to come back
to the primality of these numbers.

F. Morain

[1] http://primes.utm.edu/mersenne/NewMersenneConjecture.html

[2] Math. Comp. 76, 493--505.

Kaynak: http://www.lix.polytechnique.fr/~morain/Primes/bsw42737.txt

--
[ Bu gönderi, http://ddili.org/forum'dan dönüştürülmüştür. ]